Answers

Warm Up

- 5
- 23
- 16
- $\frac{1}{81}$

Arithmetic Sequences

1. 10 th term is 21,100 th is 201 , and 1000 th is 2001 . In general, the nth term is $2 n+1$.
2. $a+(n-1) d$
3. First 4 is 16 , first 7 is 49 , and first 11 is 121 . The sum seems to be equal to the number of terms squared.
4. We see that each of the sums of corresponding terms is 34 .
5. $\frac{n(2 a+(n-1) d)}{2}$
6. We can find c because c is the average of all 5 numbers, or 6 .
7. 31

Geometric Sequences

1. 10th is $2^{9}, 100$ th is 2^{99}, and 1000 th is 2^{999}. For nth term it is 2^{n-1}.
2. Everything cancels out except $729-1$.
3. It is $a r^{10}-1$
4. We get $S=\frac{a r^{n}-a}{r-1}$.
5. B
6. 5

Pascal's Triangle

1. The triangle is symmetric. The second diagonal is the counting numbers. The third diagonal is the triangular numbers.
2. The sum of each row is a power of 2 .
3. Coloring in all of the odd entries will result in Sierpinski's Triangle.
4. Take the sum along diagonals in the picture below.

5. There are 4 combinations $\{\mathrm{Al} / \mathrm{Bob} / \mathrm{Carl}, \mathrm{Al} / \mathrm{Bob} / \mathrm{Dan}, \mathrm{Al} / \mathrm{Carl} / \mathrm{Dan}, \mathrm{Bob} / \mathrm{Carl} / \mathrm{Dan}\}$. The answer can be found as the 4 th entry on the 5 th row.
6. There are 70 combinations. This can be found as the 5 th entry on the 9 th row.
